Graphs for quantitative and qualitative data and the Normal (Gaussian) distribution R-Studio

Eirini Pagkalidou MSc, Phd pagalidou@auth.gr

THESSALONIKI 2023

Objectives

Upon completion of this lecture you will be able to:

Choose appropriate graph(s) to describe variables

□ Interpret basic graphs when you see them

□ Recognize Normal distributed variables based on boxplots and histograms

Chart Suggestions/A Thought-Starter

Chart Suggestions- The R Graph Gallery

https://www.r-graph-gallery.com/

The R Graph Gallery

Welcome the R graph gallery, a collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2. Feel free to suggest a chart or report a bug; any feedback is highly welcome. Stay in touch with the gallery by following it on Twitter or Github. If you're new to R, consider following this course.

Types of Variables: Overview

Bar Chart

- It is used to plot a categorical variable
- More than one variables

Separately present the blood type distribution in men and women

Box Plot

- It is used to plot a continuous variable or a combination of categorical and continuous variables.
- This plot is useful for visualizing the spread of the data and detect outliers.
- It shows five statistically significant numbers- the minimum, the 25th percentile, the median, the 75th percentile and the maximum.
- It shows the <u>distribution</u> (shape, center, range, variation) of continuous variables.

Box Plot Anatomy

Grouped boxplots

Histogram

- Histogram is used to plot continuous variable.
- It breaks the data into bins and shows frequency distribution of these bins.
- We can always change the bin size and see the effect it has on visualization.

Histogram

Note the shape: Although symmetric, slightly skewed to the right

10 "breaks", age is categorized in 11 groups

Histogram

Use 100 "breaks", instead

This is too much detail! We are only interested on the shape of the distribution...

Scatterplot

• Two continuous variables

The Normal Distribution

Note constants: π =3.14159 e=2.71828

Properties of the Normal Distribution

- The mean, mode and median are all equal.
- The curve is symmetric at the center (around the mean).
- Half of the values are to the left of the mean and half of the values are to the right.
- The area under the curve is equal to 1.

NOTE: We cannot use only these properties to declare that our data follow the Normal Distribution – we need to use a normality test!

Normal Distribution

For different means, the curve moves to the right for larger means to the left for smaller means

Normal Distribution

A smaller standard deviation indicates that the data is tightly clustered around the mean, the curve is taller.

A larger standard deviation indicates greater variability in our data, the curve is flatter and wider.

Empirical Rule

- The area between μ - σ and μ + σ is about 68%.
- The area between μ -2 σ and μ +2 σ is about 95%.
- The area between μ -3 σ and μ +3 σ is about 99.7%.

Almost all values fall within 3 standard deviations!

Are my data normally distributed?

- Look at the histogram! Does it appear bell shaped?
- Compute descriptive summary measures—are mean, median, and mode similar?
- Run tests of normality (such as Shapiro-Wilk). But be cautious, highly influenced by sample size!

Are my data normally distributed (I)?

Are my data normally distributed (II)?

Formal tests for normality

- For a formal test for normality, we can perform a Shapiro-Wilk test.
 H_o: normal
 H_a: not normal
- <u>Results</u>: (Shapiro-Wilk)

Hematocrit: No evidence of non-normality (p=0.136 s-w) INR: Strong evidence for non-normality (p<0.001)

• All indication converge to the conclusion that Hematocrit **can** be assumed to be normally distributed, while INR **cannot** be assumed to be normally distributed

