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Logistic Regression

• Logistic regression is a GLM used to model a binary categorical
variable using continuous and categorical explanatory variables.

• We only need to establish a link function that connects 𝑦 to 𝑝.

𝑙𝑜𝑔𝑖𝑡 𝑝 = log
𝑝

1 − 𝑝
, 0 ≤ 𝑝 ≤ 1.

• The logistic regression model can be given by the following equation:

log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1Χ1 +⋯+ 𝛽𝑛𝑋𝑛

We assume that relationships are linear on the logistic scale



When to use simple logistic regression

• When we have a binary outcome Y (i.e. yes/no, treated/untreated)

• We have one independent variable X that we think it is related to the 
outcome Y. 

The independent variable can be continuous, categorical or ordinal. 

We will look at the interpretation of the simple logistic regression in three 
examples.



We want to examine whether several confounders have an effect on the birth of babies 
with low weight (<2500 grams). For this reason, the data of 189 women was collected, 
59 of which had given birth to a baby with a low weight.

The confounders that were taken into account are:

• Mother’s age(AGE), 
• Mother’s weight at the last menstrual period (LWT), 
• Mother’s race (RACE, 1=White, 2=Black, 3=Other), 
• Smoking during pregnancy (SMOKE, 1= Yes, 0=No),
• History of premature births (PTL, 0=zero, 1=one etc), 
• History of hypertension (HT, 1= Yes, 0=No), 
• Uterus abnormalities (UI, 1= Yes, 0=No),
• Number of visits to the doctor the first trimester of pregnancy (FTV)

Example:

Risk Factors Associated With Low Infant 

Birth Weight

4



How do we use a logistic model in this 

example?

• Outcome: Baby’s low birth weight (LOW)

• Explanatory variable: Mother’s weight at the last menstrual cycle (LWT) 
(continuous variable) 

• Model: We have the following logistic model equation: 

𝐿𝑂𝑊 = ቊ
0, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 2500 𝑔𝑟𝑎𝑚𝑠 𝑜𝑟 𝑚𝑜𝑟𝑒
1, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2500 𝑔𝑟𝑎𝑚𝑠



Results and Interpretation
Coefficients:

Estimate Std. Error z value  p-value

(Intercept)       1.02328    0.79043   1.295   0.1955  

LWT              -0.02842    0.01239  -2.295   0.0218

• The intercept (β0=1.023) is the estimated log odds of LOW for mothers whose weight is 0. (sometimes is 
not quite meaningful)

• The estimated coefficient (β1= -0.028) of LWT is negative. β1 is the estimated change in the log odds of 
LOW for one kg increase in LWT.

• To convert these values to odds (OR) we take the exponential value of log odds. 

• So, the OR for β1 is e-0.02842 = 0.9719. 

• This means that the odds that baby is born with a low weight are reduced by about 2.8% as mother’s 
weight increases by one kg ((0.9719-1)x100).

• p-value= 0.0218, 95%CI: (0.9471, 0.9944)

• To express the OR for every 10 kg increase in mother’s weight raise the odds to the power of 10. 

• 0.9719810 = 0.7526

• The probability that a baby will be born with a low weight is reduced by about 25% for every 10 kg 
increase in mother’s weight.

𝛽1



Example 2: Explanatory variable with two 

categories: Baby’s low birth weight and mother’s 

smoking status during pregnancy

Variables in the model:

• Outcome: Baby’s low birth weight (LOW)

• Explanatory variable: Smoking status during pregnancy (SMOKE). 

We consider the groups LOW=0 and SMOKE=0 as the reference groups. 

• Model: We have the following logistic model equation: 

𝐿𝑂𝑊 = ቊ
0, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 2500 𝑔𝑟𝑎𝑚𝑠 𝑜𝑟 𝑚𝑜𝑟𝑒
1, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2500 𝑔𝑟𝑎𝑚𝑠



Results and Interpretation

Coefficients:

Estimate Std. Error z value  p-value

(Intercept)  -1.0871   0.2147   -5.062   4.14e-07 

SMOKE         0.7041   0.3196    2.203   0.0276 

• β1=0.704 is positive, so low birth weight is positively associated with 
smoking during pregnancy. 

• OR=exp(β1)= 2.021: the odds that a baby is born with low weight are almost 
two times higher for smokers than for non-smokers.

• p-value=0.027, 95%CI: (1.082, 3.800)

𝛽1



Chi-square test

• Chi-square test can be considered as a special case of 
logistic regression where both dependent and independent 
variables are binary. 

• χ2=4.923, df=1, p-value=0.0264

• OR=(30/44)/(29/86)=2.021

LOW

Yes No

SMOKE
Yes 30 44

No 29 86



Variables in the model: 

• Outcome: Baby’s low birth weight (LOW)

• Explanatory variable: Mother’s race (RACE). 

𝐿𝑂𝑊 = ቊ
0, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 2500 𝑔𝑟𝑎𝑚𝑠 𝑜𝑟 𝑚𝑜𝑟𝑒
1, 𝑏𝑎𝑏𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑖𝑟𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2500 𝑔𝑟𝑎𝑚𝑠

Example 3: Categorical explanatory variable with more than 

two categories: Baby’s low birth weight and mother’s race

• Model: We have the following logistic model equation:



Results and Interpretation

Coefficients:

Estimate Std. Error  z value  p-value

(Intercept)    -1.1550    0.2391   -4.830   1.36e-06 

RACE.Black 0.8448    0.4634    1.823   0.0683

RACE.Other 0.6362    0.3478    1.829   0.0674

• Black mothers: 
▫ OR=exp(0.8448)=2.3257, p-value=0.068, 95%CI: (0.9255, 5.7746) 

• Mothers with other race:
▫ OR=exp(0.6362)= 1.8892, p-value=0.0674, 95%CI: (0.9565, 3.7578)



Multiple Logistic Regression

• We use multiple logistic regression when we have a binary outcome and two 
or more explanatory variables. 

• We want to investigate how the explanatory variables affect the binary 
outcome. 

▫ Explanatory variables can be continuous, categorical or ordinal.



How many explanatory variables can we 

include in the model?

A minimum of 10 events per explanatory variable; where event denotes the 
cases belonging to the less frequent category in the dependent variable.

In our example, the data of 189 women were collected, 59 of which had
given birth to a baby with a low weight. The logistic regression model
could reasonably accommodate, at most, six (59/10) independent
variables (since 59 are the fewest event in the outcome).



Example: Risk Factors Associated 

With Low Infant Birth Weight

• We would like to see if any of the variables (AGE, LWT, RACE, SMOKE) have 
an effect on low birth weight (LOW). 

• Firstly, we perform a separate univariate logistic regression for each of the 
explanatory variables. 

▫ variables that have a p<0.2 in the univariate analysis will be included in 
the multivariable model. 



Univariate analysis results

Variable Name OR (95% CI) P-value

LWT 0.97 (0.95,0.99) 0.021

RACE – (Black/White)

RACE – (Other/White)

2.33 (0.93,5.77)

1.89 (0.96,3.76)

0.068

0.067

SMOKE (yes/no) 2.02 (1.08,3.80) 0.027

AGE 0.95 (0.89,1.01) 0.105



Multicollinearity Diagnostics

Same as in linear regression: 

• We have,

All variables have a quite low VIF



Model Fit

Likelihood Ratio Test and ANOVA test

• Both tests are equivalent. 
• This test asks whether the model with predictors fits significantly 

better than a model with fewer predictors (only makes sense for 
nested models).

Full model: LOW~RACE+SMOKE+AGE+LWT
Reduced model: LOW~RACE+SMOKE+LWT

This means that adding parameter AGE to the model did not lead to a 
significantly improved fit over the model 1.



Model Fit AIC 

• It’s useful for comparing models

• Can be used for comparing non-nested models

• We select the model that has the smallest AIC

• Full model AIC=226.48 

• Reduced model AIC=224.9



Final Results

Univariate Analysis Multivariable Analysis

Variables OR 95%CI p-value OR 95% CI p-value

Age in years 0.95 0.89, 1.01 0.105 0.98 0.91, 1.04 0.515

Weight in Kg 0.97 0.95, 0.99 0.022 0.97 0.95, 0.99 0.047

Race

Black/White

Other/White

2.33

1.89

0.94, 5.77

0.96, 3.74

0.068

0.067

3.44

2.57

1.25, 9.67

1.15, 5.94

0.017

0.023

Smoking (Yes/No) 2.02 1.08, 3.78 0.027 2.87 1.38, 6.18 0.006

OR:Odds Ratio, CI: Confidence Interval

The interpretation of the variables is similar to simple logistic regression

For example, 

“Black” mothers are 3.4 (p=0.017) times more likely to have a baby with a low 
weight than white mothers adjusted for all the other variables in the model.

Mothers of “other” race are 2.6 (p=0.023) times more likely to have a baby with a 
low weight than white mothers adjusted for all the other variables in the model.



Thank you!
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