Logistic Regression R-Studio

Eirini Pagkalidou MSc, Phd pagalidou@auth.gr

THESSALONIKI 2023

Logistic Regression

- Logistic regression is a GLM used to model a binary categorical variable using continuous and categorical explanatory variables.
- We only need to establish a *link* function that connects *y* to *p*.

$$logit(p) = log\left(\frac{p}{1-p}\right), 0 \le p \le 1.$$

• The logistic regression model can be given by the following equation:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n$$

We assume that relationships are linear on the logistic scale

When to use simple logistic regression

- When we have a binary outcome *Y*(i.e. yes/no, treated/untreated)
- We have **one** independent variable *X* that we think it is related to the outcome *Y*.

The independent variable can be continuous, categorical or ordinal.

We will look at the interpretation of the simple logistic regression in three examples.

Example: Risk Factors Associated With Low Infant Birth Weight

We want to examine whether several confounders have an effect on the birth of babies with low weight (<2500 grams). For this reason, the data of 189 women was collected, 59 of which had given birth to a baby with a low weight.

The confounders that were taken into account are:

- Mother's age(AGE),
- Mother's weight at the last menstrual period (LWT),
- Mother's race (RACE, 1=White, 2=Black, 3=Other),
- Smoking during pregnancy (SMOKE, 1= Yes, 0=No),
- History of premature births (PTL, 0=zero, 1=one etc),
- History of hypertension (HT, 1= Yes, 0=No),
- Uterus abnormalities (UI, 1= Yes, 0=No),
- Number of visits to the doctor the first trimester of pregnancy (FTV)

How do we use a logistic model in this example?

• Outcome: Baby's low birth weight (LOW)

 $LOW = \begin{cases} 0, & baby with a birth weight of 2500 grams or more \\ 1, & baby with a birth weight less than 2500 grams \end{cases}$

- Explanatory variable: Mother's weight at the last menstrual cycle (LWT) (continuous variable)
- Model: We have the following logistic model equation:

 $logit(odds \ of \ LOW = 1) = \beta_0 + \beta_1 LWT$

Results and Interpretation

Coefficients:

- The intercept (β_0 =1.023) is the estimated log odds of LOW for mothers whose weight is 0. (sometimes is not quite meaningful)
- The estimated coefficient (β_1 = -0.028) of LWT is negative. β_1 is the estimated change in the log odds of LOW for one kg increase in LWT.
- To convert these values to odds (OR) we take the exponential value of log odds.
- So, the OR for β_1 is $e^{-0.02842} = 0.9719$.
- This means that the odds that baby is born with a low weight are reduced by about 2.8% as mother's weight increases by one kg ((0.9719-1)x100).
- p-value= 0.0218, 95%CI: (0.9471, 0.9944)
- To express the OR for every 10 kg increase in mother's weight raise the odds to the power of 10.
- $0.97198^{10} = 0.7526$
- The probability that a baby will be born with a low weight is reduced by about 25% for every 10 kg increase in mother's weight.

Example 2: Explanatory variable with two categories: Baby's low birth weight and mother's smoking status during pregnancy

Variables in the model:

• Outcome: Baby's low birth weight (LOW)

 $LOW = \begin{cases} 0, & baby with a birth weight of 2500 grams or more \\ 1, & baby with a birth weight less than 2500 grams \end{cases}$

• Explanatory variable: Smoking status during pregnancy (SMOKE).

$$SMOKE = \begin{cases} 0, & no \\ 1, & yes \end{cases}$$

We consider the groups LOW=0 and SMOKE=0 as the **reference** groups.

• Model: We have the following logistic model equation:

 $logit(odds \ of \ LOW = 1) = \beta_0 + \beta_1 SMOKE$

Results and Interpretation

Coefficients:

Estimate Std. Error z value p-value (Intercept) -1.0871 0.2147 -5.062 4.14e-07 SMOKE 0.7041 0.3196 2.203 0.0276 β_1

- β_1 =0.704 is positive, so low birth weight is positively associated with smoking during pregnancy.
- OR=exp(β_1)= 2.021: the odds that a baby is born with low weight are almost two times higher for smokers than for non-smokers.
- p-value=0.027, 95%CI: (1.082, 3.800)

Chi-square test

• Chi-square test can be considered as a special case of logistic regression where both dependent and independent variables are binary.

		LOW		
		Yes	No	
	Yes	30	44	
SMOKE	No	29	86	

- χ²=4.923, df=1, p-value=0.0264
- OR=(30/44)/(29/86)=2.021

Example 3: Categorical explanatory variable with more than two categories: Baby's low birth weight and mother's race

Variables in the model:

• Outcome: Baby's low birth weight (LOW)

 $LOW = \begin{cases} 0, & baby with a birth weight of 2500 grams or more \\ 1, & baby with a birth weight less than 2500 grams \end{cases}$

• Explanatory variable: Mother's race (RACE).

$$RACE = \begin{cases} 1, & white \\ 2, & black \\ 3, & other \end{cases}$$

• Model: We have the following logistic model equation:

 $logit(odds \ of \ LOW = 1) = \beta_0 + \beta_1 RACE$

Results and Interpretation

Coefficients:

	Estimate	Std. Error	z value	p-value
(Intercept)	-1.1550	0.2391	-4.830	1.36e-06
RACE.Black	0.8448	0.4634	1.823	0.0683
RACE.Other	0.6362	0.3478	1.829	0.0674

• Black mothers:

• OR=exp(0.8448)=2.3257, p-value=0.068, 95%CI: (0.9255, 5.7746)

• Mothers with other race:

• OR=exp(0.6362)= 1.8892, p-value=0.0674, 95%CI: (0.9565, 3.7578)

Multiple Logistic Regression

- We use multiple logistic regression when we have a binary outcome and two or more explanatory variables.
- We want to investigate how the explanatory variables affect the binary outcome.
 - Explanatory variables can be continuous, categorical or ordinal.

How many explanatory variables can we include in the model?

A minimum of 10 **events** per explanatory variable; where **event** denotes the cases belonging to the less frequent category in the dependent variable.

In our example, the data of 189 women were collected, 59 of which had given birth to a baby with a low weight. The logistic regression model could reasonably accommodate, at most, six (59/10) independent variables (since 59 are the fewest event in the outcome).

> ta	able(lowbwt\$LOW)
NO	Yes	
130	59	

Example: Risk Factors Associated With Low Infant Birth Weight

- We would like to see if any of the variables (AGE, LWT, RACE, SMOKE) have an effect on low birth weight (LOW).
- Firstly, we perform a separate univariate logistic regression for each of the explanatory variables.
 - variables that have a p<0.2 in the univariate analysis will be included in the multivariable model.

Univariate analysis results

Variable Name	OR (95% CI)	P-value		
LWT	0.97 (0.95,0.99)	0.021		
RACE – (Black/White) RACE – (Other/White)	2.33 (0.93,5.77) 1.89 (0.96,3.76)	0.068 0.067		
SMOKE (yes/no)	2.02 (1.08,3.80)	0.027		
AGE	0.95 (0.89,1.01)	0.105		

Multicollinearity Diagnostics

Same as in linear regression:

• We have,

	GVIF	Df	GVIF^(1/(2*Df))
LWT	1.128124	1	1.062132
AGE	1.051659	1	1.025504
SMOKE	1.302165	1	1.141125
RACE	1.461758	2	1.099560

All variables have a quite low VIF

Model Fit

Likelihood Ratio Test and ANOVA test

- Both tests are equivalent.
- This test asks whether the model with predictors fits significantly better than a model with fewer predictors (**only makes sense for nested models**).

Full model: LOW~RACE+SMOKE+AGE+LWT Reduced model: LOW~RACE+SMOKE+LWT

Likelihood ratio test Model 1: LOW ~ LWT + SMOKE + RACE Model 2: LOW ~ LWT + AGE + SMOKE + RACE #Df LogLik Df Chisq Pr(>Chisq) 1 5 -107.45 2 6 -107.24 1 0.4279 0.513

Analysis of Deviance Table Model 1: LOW ~ LWT + SMOKE + RACE Model 2: LOW ~ LWT + AGE + SMOKE + RACE Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 184 214.91 2 183 214.48 1 0.42788 0.513

This means that adding parameter AGE to the model did not lead to a significantly improved fit over the model 1.

Model Fit AIC

- It's useful for comparing models
- Can be used for comparing non-nested models
- We select the model that has the smallest AIC
- Full model AIC=226.48
- Reduced model AIC=224.9

Final Results

	Univariate Analysis			Multivariable Analysis		
Variables	OR	95%CI	p-value	OR	95% CI	p-value
Age in years	0.95	0.89, 1.01	0.105	0.98	0.91, 1.04	0.515
Weight in Kg Race	0.97	0.95, 0.99	0.022	0.97	0.95, 0.99	0.047
Black/White	2.33	0.94, 5.77	0.068	3.44	1.25, 9.67	0.017
Other/White	1.89	0.96, 3.74	0.067	2.57	1.15, 5.94	0.023
Smoking (Yes/No)	2.02	1.08, 3.78	0.027	2.87	1.38, 6.18	0.006
OR:Odds Ratio, CI: Confidence Interval						

The interpretation of the variables is similar to simple logistic regression

For example,

"Black" mothers are 3.4 (p=0.017) times more likely to have a baby with a low weight than white mothers adjusted for all the other variables in the model.

Mothers of "other" race are 2.6 (p=0.023) times more likely to have a baby with a low weight than white mothers adjusted for all the other variables in the model.

